Cut locus in a Riemannian manifold
نویسندگان
چکیده
منابع مشابه
On a class of paracontact Riemannian manifold
We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.
متن کاملon a class of paracontact riemannian manifold
we classify the paracontact riemannian manifolds that their rieman-nian curvature satisfies in the certain condition and we show that thisclassification is hold for the special cases semi-symmetric and locally sym-metric spaces. finally we study paracontact riemannian manifolds satis-fying r(x, ξ).s = 0, where s is the ricci tensor.
متن کاملA new connection in a Riemannian manifold
In a Riemannian manifold, the existence of a new connection is proved. In particular cases, this connection reduces to several symmetric, semi-symmetric and quarter-symmetric connections; even some of them are not introduced so far. We also find formula for curvature tensor of this new connection. 2000 Mathematics Subject Classification: 53B15.
متن کاملRiemannian Multi-Manifold Modeling
This paper advocates a novel framework for segmenting a dataset in a Riemannian manifold M into clusters lying around low-dimensional submanifolds of M . Important examples of M , for which the proposed clustering algorithm is computationally efficient, are the sphere, the set of positive definite matrices, and the Grassmannian. The clustering problem with these examples of M is already useful ...
متن کاملBiharmonic Green domains in a Riemannian manifold
Let R be a Riemannian manifold without a biharmonic Green function defined on it and Ω a domain in R. A necessary and sufficient condition is given for the existence of a biharmonic Green function on Ω.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Faculty of Science, Ibaraki University. Series A, Mathematics
سال: 1986
ISSN: 1883-4345,0579-3068
DOI: 10.5036/bfsiu1968.18.45